Exercise 16

Write a trial solution for the method of undetermined coefficients. Do not determine the coefficients.

$$
y^{\prime \prime}+3 y^{\prime}-4 y=\left(x^{3}+x\right) e^{x}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+3 y_{c}^{\prime}-4 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+3\left(r e^{r x}\right)-4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+3 r-4=0
$$

Solve for r.

$$
\begin{gathered}
(r+4)(r-1)=0 \\
r=\{-4,1\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-4 x}$ and e^{x}. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{-4 x}+C_{2} e^{x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
y_{p}^{\prime \prime}+3 y_{p}^{\prime}-4 y_{p}=\left(x^{3}+x\right) e^{x}
$$

Since the inhomogeneous term is the product of a polynomial and an exponential, the particular solution would be

$$
y_{p}=\left(A x^{3}+B x^{2}+C x+D\right) e^{x} .
$$

e^{x} already satisfies the complementary solution, though, so an extra factor of x is needed.

$$
y_{p}=x\left(A x^{3}+B x^{2}+C x+D\right) e^{x}
$$

